How much energy is required to power human civilization? What is it that makes our cities, factories, homes, and cars so energy inefficient? How can the average individual affect energy directions? Find out in this overview of how energy touches everything from engineering and economics to biology, chemistry, and geophysics.
Energy is a fundamental part of our universe-in a sense, the universe is energy. Here, Professor Wysession introduces you to the many fascinating forms energy takes, including potential, kinetic, mechanical, and thermal energy. He also explains how energy is measured to make you more fluent in energy-speak" for the coming lectures."
Discover what makes electricity such an attractive vehicle for energy. Learn how electricity can come from oil, coal, solar, and other forces, and how electricity travels through wires with the help of voltage. Also, examine recent advances that make it easier for us to choose where we source our electricity.
Turn now to chemical energy, the potential energy resulting from the position of atoms within molecules. After an overview of photosynthesis (perhaps the universe's most amazing form of energy conversion), learn how combustion transforms biofuels into light and heat, and how energy density affects the transportation of biofuels like petroleum.
In the first of two lectures on petroleum, examine the science behind this common fossil fuel: how it's formed, how it's found and processed, how it's transported, and how it's used. You'll also gain insights into related topics, including geologic structures such as anticlines and the growth of the petroleum industry.
Peer into the future with this look at some of the newest trends in oil and gas production. Professor Wysession explains the difference between conventional and unconventional oil, the geology of oil sands and oil shales, and the risks of fracking (which can cause earthquakes and other serious damage).
Fossil fuels, while abundant and portable, come with a significant list of drawbacks. Focus now on the various financial, environmental, and health concerns surrounding our continued reliance on fossil fuels (such as coal fires and oil spills). Then, examine some recent technological and legislative efforts to combat these problems.
Professor Wysession explains how uranium is used to make electricity through the process of nuclear fission, from acquiring uranium-bearing rocks to disposing of leftover nuclear waste. Afterwards, learn some of the upsides of nuclear energy (including its nearly unlimited power) and its downsides (such as its inability to become decentralized or portable).
Sunlight is a literally inexhaustible source of energy. Discover why (and how) the sun gives off light, how much sunlight energy the earth's surface gets in an average day, how much land we'd need to supply all our energy needs through sunlight, and some of the geographical problems with solar power.
The biggest area of growth for solar energy: transforming sunlight into electricity with the aid of solar panels. Go inside the world of photovoltaic solar panels to find out how they convert sunlight into functional power. Also, take a closer look at other solar-related technologies, like solar troughs, solar towers, and Stirling engines.
Wind power is another growing source of renewable energy. First, discover how giant wind turbines provide us with energy. Then, get a brief history of how humans have tapped into wind's potential and the meteorology of how wind works. Finally, learn the best regions for wind power and the advantages and drawbacks of using wind turbines.
Hydroelectric power continues to be the planet's largest renewable source of electricity. In this lecture, Professor Wysession discusses the benefits of hydroelectric power (no CO2 production, free fuel) and drawbacks (environmental disruption); how hydroelectricity generation works; run-of-the-river and impoundment-style power plants; and the basics of the water cycle.
Liquid biofuels like biodiesel and corn-based ethanol are the most rapidly growing forms of biomass energy in the 21st century. Here, survey some of the many intriguing chemical reaction routes that transform solid plant biomass into liquids with high-energy densities. Then, ponder some of the economic and political implications of biofuels.
Go deep underground for a look at geothermal energy. Topics include the energy budget of our planet, two main ways of using geothermal energy, five different technologies used for hydrothermal power systems (including dry steam power plants), and the concept of shallow ground source heat pumps (GSHPs).
The sun doesn't always shine, and the wind doesn't always blow. So how do we store renewable energy from these and other sources for later? Focus on several basic (as well as high-performance and high-volume) technologies for storing the surplus of energy we can get from sources such as wind and solar farms.
Transportation is an enormous part of our global total energy consumption. From planes to trains to automobiles, learn how scientists are working to make popular modes of transportation as fuel-efficient as possible. Also, explore the topic of electric cars and whether or not they're truly more efficient than gas-powered ones.
Where is energy commonly being wasted? How does one become a more efficient energy user? This lecture is filled with takeaways to help anyone (from home owner to car driver to CEO) become more energy efficient in a range of sectors and settings: industries, transportation, residences, and commercial buildings.
Professor Wysession outlines some of the major economic and political forces shaping the development of the world's energy resources. You'll learn how hidden costs can affect the economics of supply and demand, how governments can incentivize and dis-incentivize energy industries, and the complexities of international agreements (and trade wars).
Look ahead to the possible (and probable) advancements in the areas of energy resources. You'll cover the growth of tidal and wave energy, the difficulty of nuclear fusion, the energy potential of earthquakes and supervolcanoes, and giant space arrays of solar panels designed to capture even more solar energy.
According to Professor Wysession, there's no easy solution to the world's energy future. Going through many of the sources explored in previous lectures, he estimates how much energy we'll need, what sources are (and will be) available to us, and how to think realistically-and optimistically-about our energy consumption.